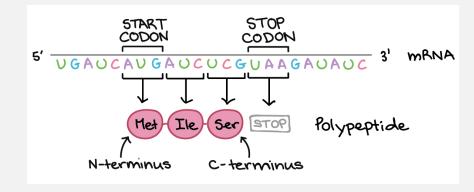

GENOMIC ANALYSIS AND PHYLODYNAMICS

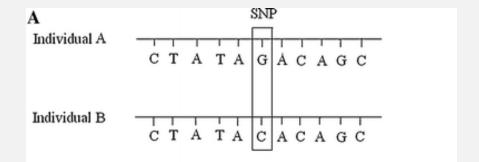
Lecture 2: Variant Calling and Phylogenetic Trees

Instructor: Dr. Ben Sobkowiak
MRC Senior Research Fellow, University College London

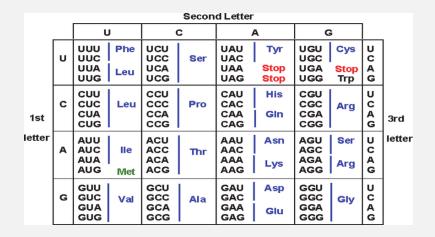
- What can variation within the genome tell us?
- What are genomic variants?
- How do we detect variation in the genome?
- Linking variation to evolutionary relationships using phylogenetic trees


What can variation in the genome tell us?

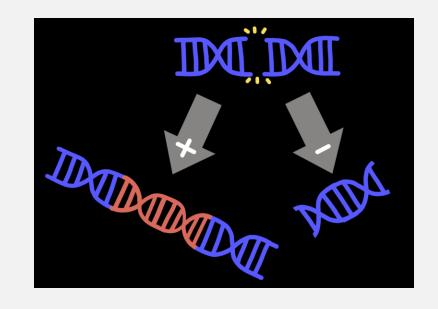
- Insights into the evolution of organisms and selection
 - Variations in the genome contribute to the adaptation of species to their environment
- Specific mutations may alter the protein that is coded for by a gene and change characteristics
- Analysing the amount and patterns of differences can relate to the amount of divergence and common ancestry between individuals
 - Can be linked to evolutionary history and transmission


How the genome is read

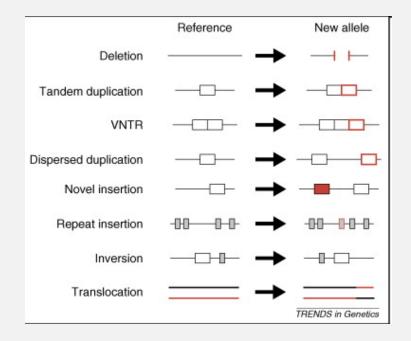
- Process of reading the genome is transcription
- RNA polymerase binds to promotors (upstream of a gene) and then 'reads' the genetic code to make a complimentary RNA strand
- This RNA strand is then translated into proteins by building amino acid blocks coded for by the sequence
- A specific sequence of three nucleotide bases (codon) encodes an amino acid


Single nucleotide polymorphisms

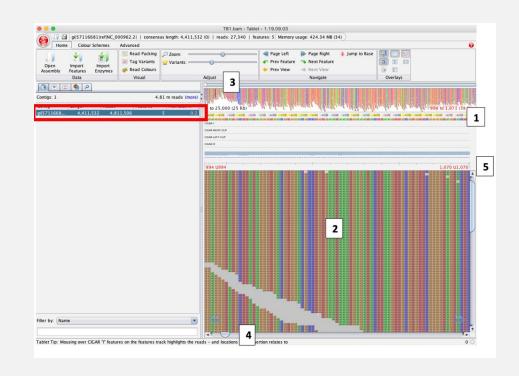
- Single Nucleotide Polymorphisms, or SNPs, are the most common type of genetic variation
- A point mutation where a single nucleotide base (A, C, G, or T) in the DNA sequence is replaced by one of the other three bases at the same position
- Most common form of genomic variation


Single nucleotide polymorphisms

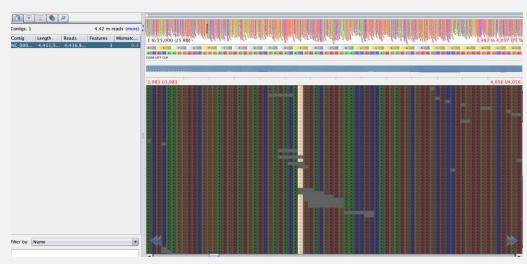
- SNPs can result in a change in the amino acid that is encoded (non-synonymous) or still code for the same amino acid (synonymous)
- There are 64 codons but only 20 amino acids (+ start and stop codons)


Insertions and deletions (Indels)

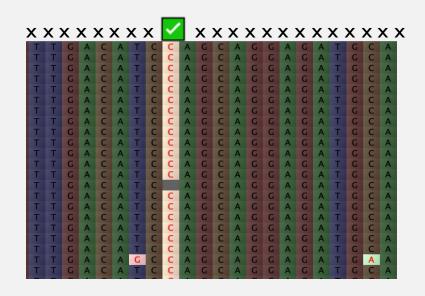
- Often abbreviated as Indels
- The addition or removal of one or more nucleotide bases
- Can have significant effects on the structure and function of genes and can contribute to genetic diversity within populations
- Can have most impact when they are 'frameshift' indels
 changes the codon position


Other genomic variants

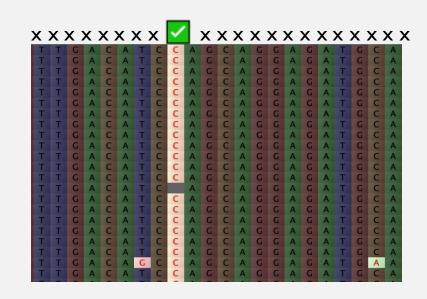
- Gene duplications
- Inversions
- Translocations
- Rarer, and more difficult to detect and analyze


Assembled/aligned genomes

- We now have our assembled or aligned genome
- The file format is called a BAM (or SAM) file
 - A TAB-delimited text format consisting of an optional header and an alignment.
- Minimum format agreed on to report sequencing results, and includes all the data in a fastq file


Assembled/aligned genomes

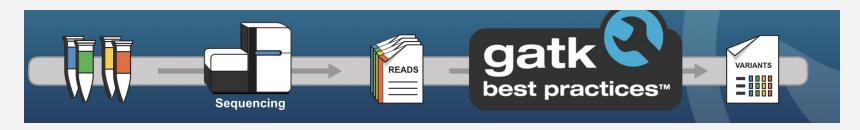
- Could scroll through the alignment file to detect variation
- But, time-consuming and subjective how do we decide between variation and error?
- We can use tools to read through the BAM file and identify true variation


Identifying variants

- We use modelling approaches to identify variants between the reference and sequences of samples, and between samples.
- Need to maximize sensitivity/specificity of calls by accounting for sequence error, poor alignment, low quality etc.

Variant calling software

- Multiple variant calling software (for short-read data) are available including:
 - GATK
 - SAM/BCFtools
 - Delly
 - Pilon
 - FreeBayes
 - DeepVariant
- Have different strengths depending on the type of variants to call

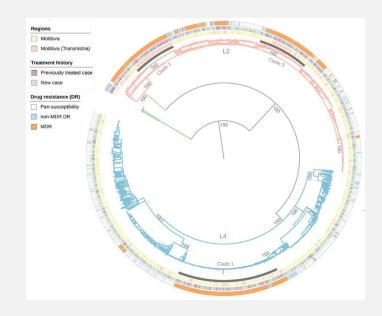

GATK variant calling

BAM -> Machine learning model to recalibrate base quality scores

Bayesian genotype likelihood model to call variants at each genomic position

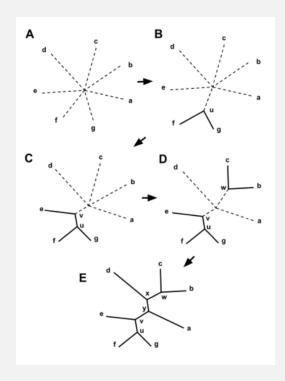
Filters variant
calls to reducefalse positives

Quality Control and Validation (manual)

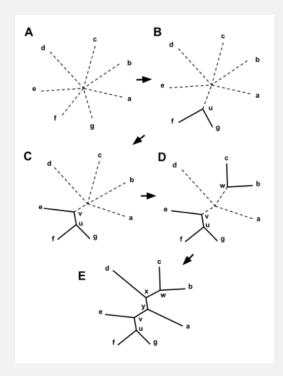

Variant Call Format (VCF) files

- The Variant Call Format (VCF) is a widely used file format in genomics for storing information about genetic variants, such as single nucleotide polymorphisms (SNPs), insertions, deletions, and other types of genetic variation.
- Important part is the Genotype data the alleles carried by each individual at the variant site.
 - e.g., "0/0" for homozygous reference, "0/1" for heterozygous, "1/1" for homozygous alternate

```
##FILTER=<ID=PASS.Description="All filters passed">
##hcftoolsVersion=1.10.2+htslib-1.10.2
##bcftoolsCommand=mpileup -B -0 20 -d 500
                                                -Ou -a DP.AD -f Data/H37Rv.fasta Data/TB1.bam Data/TB2.ba
##reference=file://Data/H37Rv.fasta
##contig=<ID=gi|57116681|ref|NC_000962.2|,length=4411532>
##ALT=<ID=*, Description="Represents allele(s) other than observed.">
##INFO=<ID=INDEL,Number=0,Type=Flag,Description="Indicates that the variant is an INDEL.">
##INFO=<ID=IDV,Number=1,Type=Integer,Description="Maximum number of raw reads supporting an indel">
##INFO=<ID=IMF,Number=1,Type=Float,Description="Maximum fraction of raw reads supporting an indel">
##INFO=<ID=VDB,Number=1,Type=Float,Description="Variant Distance Bias for filtering splice-site artefacts in RNA-seq data (bigger is better)",Versio
##INFO=<ID=RPB, Number=1, Type=Float, Description="Mann-Whitney U test of Read Position Bias (bigger is better)">
##INFO=<ID=BQB,Number=1,Type=Float,Description="Mann-Whitney U test of Base Quality Bias (bigger is better)">
##INFO=<ID=MQSB,Number=1,Type=Float,Description="Mann-Whitney U test of Mapping Quality vs Strand Bias (bigger is better)">
##INFO=<ID=SGB, Number=1, Type=Float, Description="Segregation based metric.
##INFO=<ID=MQ0F,Number=1,Type=Float,Description="Fraction of MQ0 reads (smaller is better)">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="List of Phred-scaled genotype likelihoods">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Number of high-quality bases":
##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths (high-quality bases)">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"
##INFO=<ID=ICB, Number=1, Type=Float, Description="Inbreeding Coefficient Binomial test (bigger is better)">
##INFO=<ID=HOB, Number=1, Type=Float, Description="Bias in the number of HOMs number (smaller is better)">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes for each ALT allele, in the same order as listed">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=DP4, Number=4, Type=Integer, Description="Number of high-quality ref-forward, ref-reverse, alt-forward and alt-reverse bases">
##INFO=<ID=MQ, Number=1, Type=Integer, Description="Average mapping quality">
##bcftools callVersion=1.10.2+htslib-1.10.2
##bcftools_callCommand=call -mv -Ou; Date=Thu Mar 5 15:28:59 2020
##bcftools_viewVersion=1.10.2+htslib-1.10.2
##bcftools_viewCommand=view Data/TB.bcf; Date=Thu Mar 5 15:34:29 2020
gi|57116681|ref|NC_000962.2|
                                                   483 . DP=208;VDB=0.00631102;SGB=-1.38612;MQSB=0.42763;MQ0F=0;AC=4;AN=4;DP4=0.0,104,81;MQ=45
gi|57116681|ref|NC_000962.2
gi|57116681|ref|NC_000962.2
   57116681 ref NC 000962.2
```


Phylogenetic trees

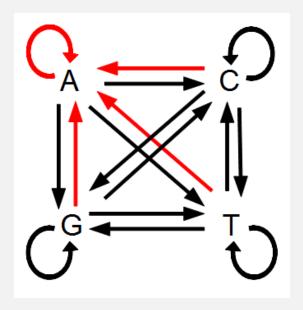
- A phylogenetic tree is a diagram that represents evolutionary relationships among organisms
- They illustrate the ancestral lineage and divergence of species, genes, or other taxonomic units.
- These trees help in understanding evolutionary history, inferring patterns of descent, and clarifying the timing of evolutionary events.


Simple methods (Neighbour-Joining)

- Neighbor-Joining (NJ) is a distance-based method used to construct phylogenetic trees
- Starts with a star-like tree, where all entities are connected to a central node (A)
- The Neighbor-Joining algorithm iteratively joins entities (nodes) in the tree while minimizing the total branch length

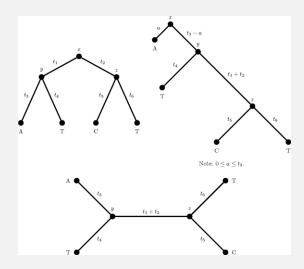
Simple methods (Neighbour-Joining)

- Neighbor-Joining is a relatively efficient and versatile method for constructing phylogenetic trees
- However, it does not explicitly model the underlying evolutionary processes, such as substitutions, insertions, deletions, or other events
- This limitation makes it less suitable for analyzing complex evolutionary scenarios

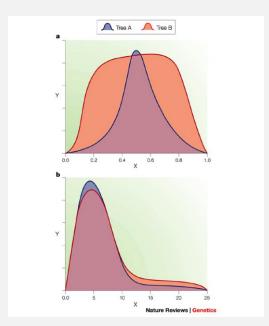


Evolutionary models

- More sophisticated tree building methods can include models:
 - Nucleotide substitution models
 - Molecular clock models
 - Population models
 - Coalescent models

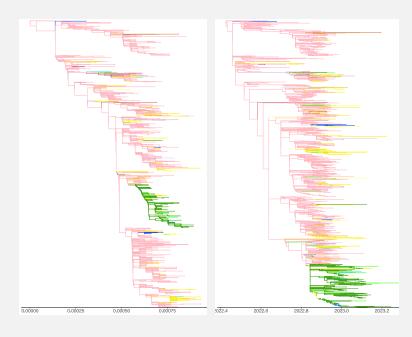

Nucleotide substitution models

- Describe the rates at which nucleotides in DNA sequences change over time
- Provide a framework for estimating the likelihood of observed DNA sequence data on a phylogenetic tree
- Common models include:
 - Jukes-Cantor (JC) Model
 - Hasegawa-Kishino-Yano (HKY) Model
 - General Time Reversible (GTR) Model

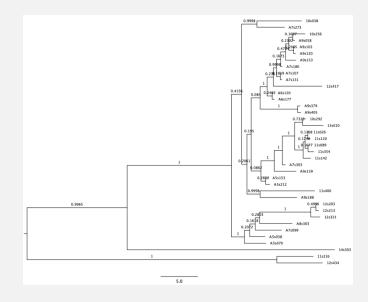

More complex methods (Maximum Likelihood)

- ML tree construction aims to find the tree topology and branch lengths that maximize the likelihood of the observed sequence data under a specified evolutionary model
- ML is powerful for its statistical rigor and ability to handle complex models of evolution
- Generally considered less flexible in handling complex models compared to Bayesian methods

Bayesian phylogenies


- Uses Bayesian statistics to estimate the posterior probabilities of different phylogenetic trees, incorporating the observed data and prior knowledge
- Calculates the probabilities of different trees by combining the likelihood of the observed data with the prior probability distributions over tree space, based on certain models of evolution
- Require careful selection of priors and are computationally demanding.

From Holder & Lewis, 2003


Timed vs untimed trees

- In untimed trees, branch lengths typically represent genetic or sequence divergence
- Help to understand the evolutionary ancestry and genetic relatedness among taxa
- Timed trees incorporate the estimated timing of evolutionary events, branches are scaled to unit time
- Useful for estimating divergence times, studying temporal changes in evolutionary processes, and reconstructing the evolutionary history of lineages

Assessing phylogenetic trees

- Bootstrapping is a resampling technique used in phylogenetics to assess the robustness of the inferred phylogenetic tree topology
- It can estimate the reliability of the branching patterns in a phylogenetic tree
- Resamples data and builds multiple trees to assign support values to branches and nodes
- High bootstrap support values indicate the inferred relationships are likely to be accurate

PRACTICAL 2: VARIANT CALLING AND MAXIMUM LIKELIHOOD TREES

- I. Variant calling and VCFs
- 2. Building consensus sequences
- 3. Aligning consensus sequences
- 4. Maximum Likelihood trees